Volume 2 (Issue 2)

pp. 87-93

Open Access

Review paper

SARS-CoV-2 and Diabetes Mellitus (DM): A Comprehensive Review

Ajmal Rashid Bhat*, Rajendra Sukhadeorao Dongre, Ragini Chintaman Patil, Media Noori Abdullah, Sangar Hassan

ARB: Department of Chemistry, R.T.M. Nagpur University, Nagpur 440033, Maharashtra, India

RSD: Department of Chemistry, R.T.M. Nagpur University, Nagpur 440033, Maharashtra, India

RCP: Department of Chemistry, Rashtrapita Mahatma Gandhi, Arts, Commerce and Science College Saoli 441225,Maharashtra, India

MNA: Department of Chemistry, College of Science, Salahaddin University Erbil 44002, Iraq

SH: Department of Chemistry, College of Science, Raparin University Sulaimanyah 46012, Iraq


*Corresponding author: Ajmal Rashid Bhat; Email: bhatajmal@gmail.com

DOI:

Received: 

29 June 2022

Published:

27 July 2022

Cite as: Bhat, A. R., Dongre, R. S., Patil, R. C., Abdullah, M. N., & Hassan, S. (2022). SARS-CoV-2 and Diabetes Mellitus (DM): A Comprehensive Review. Inventum Biologicum, 2(2), 87–93. https://doi.org/10.5281/zenodo.6915243

Abstract

Background and aims: Diabetes Mellitus with multi-systemic complications are allied with Covid-19. We conducted a comprehensive review in order to explore the interaction between diabetes Mellitus and Covid-19.
Methods: An extensive literature search was conducted for the relevant articles in PubMed, WHO and Google Scholar databases till April 16, 2020, with the keywords “SARS-CoV-2”, “Angiotensin-converting enzyme 2 (ACE2)”, “diabetes mellitus”, and “management of diabetes mellitus”.
Results: As of April 16, 2020, the number of confirmed Covid-19 cases had passed 1991562 and more than 130885 deaths globally.
Conclusion: Diabetes Mellitus is associated with risk of Covid-19. Our study suggests that clinicians should pay more attention to the monitoring and treatment of Covid-19 patients with DM.

Keywords:

SARS-CoV-2, Angiotensin-converting enzyme 2 (ACE2), Endocrinological disorder, Immune system, Diabetes mellitus (DM)

References

  1. Battegay, M., Kuehl, R., Sutter, S.T., Hirsch, H. H., Widmer, A.F., & Neher. R. A. (2020). 2019-Novel coronavirus (2019-nCoV): estimating the case fatality rate: a word of caution. Swiss Med Wkly, 5, 150.

  2. Belouzard, S., Millet, J. K., Licitra, B. N., &   Whittaker, G. R. (2012). Mechanisms of Coronavirus Cell Entry Mediated by the Viral Spike Protein. Viruses, 4, 1011-33.

  3. Deresinski, S. (1995). Infections in the diabetic patient: Strategies for the clinician. Infection Disease Reports, 1, 1-12.

  4. Doremalen, N.V., Bushmaker, T., Morris, D. H., Holbrook, M. G., Gamble, A., Williamson, B. N., Tamin, A., Harcourt, J. L., Thornburg, N. J., Gerber, S. I., Smith, J. O.L., Wit, E.D., & Munster, V. J. (2020). Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. The New England Journal of Medicine, 382, 1564-1567.

  5. Gheibi, N., & Parvizi, M. R. (2005). The effect of cinnamon on glucose concentration of diabetic rats in presence or absence of Insulin. Journal of Qazvin University of Medical Science and Health Services, 9, 3-7.

  6. Gupta, R. C., Chang, D., Nammi, S., Bensoussan, A., Bilinski, K., & Roufogalis, B. D. (2017). Interactions between antidiabetic drugs and herbs: An overview of mechanisms of action and clinical implications. Diabetology & metabolic syndrome, 9, 1-12.

  7. Hoffmann, M., Weber, H.K., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 16, 271-280.

  8. Hui, D.S., Azhar, E.I., Madani, T.A., Ntoumi, F., Kock, R., Dar, O. (2020). The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - the latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis, 91, 264-6.

  9. Lee, J.S., Poo, H., Han, D. P., Hong, S.P., Kim, K., Cho, M. W., Kim, E., Sung, M. H., & Kim. C.J. (2006). Mucosal Immunization with Surface-Displayed Severe Acute Respiratory Syndrome Coronavirus Spike Protein on Lactobacillus casei Induces Neutralizing Antibodies in Mice. Journal of Virology, 8, 4079–4087.

  10. Millet, J. K., & Gary, R. (2018). Physiology and molecular triggers for SARA-CoV membrane fusion and entry into host cell. Virology, 517, 3-8.

  11. National Center for Biotechnology Information (NCBI) (2022). ACE2, angiotensin I converting enzyme 2 [Homo sapiens (human)]. Gene ID: 59272

  12. Otsuka, Y., Kiyohara, C., Kashiwado, Y., Sawabe, T., Nagano, S., Kimoto, Y. (2018). Effects of tumor necrosis factor inhibitors and tocilizumab on the glycosylated hemoglobin levels in patients with rheumatoid arthritis; an observational study. PloS One, 13, 0196368.

  13. Singh, A. K., Singh, A., Shaikh, A., Singh, R., & Misra, A. (2020). Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: a systematic search and a narrative review with a special reference to India and other developing countries. Diabetes Metab Syndr Clin Res Rev, 14(3), 241-246.

  14. Tikellis, C., & Thomas, M. C. (2012). Angiotensin-converting enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in health and disease. International journal of peptides, 12, 1-8.

  15. Wan, Y., Shang, J., Graham, R., Baric, R. S., & Li , F. (2020). Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. Journal of Virology, 17, 94.

  16. Wang, H., Yang, P., Liu, K., Guo, F., Zhang, Y., Zhang, G., & Jiang, C. (2008). Cell Research, 18, 290-301.

  17. Wilde, A.H.D., Snijder, E. J., Kikkert, M., & Hemert, M. J. V. (2018). Host factors in coronavirus replication. Current Topics in Microbiology and Immunology, 419, 1-42.

  18. Wit, E.D., Doremalen, N.V., Falzarano, D., & Munster, V. J. (2016). SARS and MERS: recent insights into emerging coronaviruses. Nature Reviews Microbiology, 14, 523-534.

  19. World Health Organization (WHO) (2020). Coronavirus disease 2019 (COVID-19). Situation Report 87.

  20. World Health Organization (WHO) (2020). Director-General’s-opening Remarks at the media briefing on Covid-19.

  21. World Health Organization (WHO) (2020). Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). https://www.who.int/publications-detail/report-of-the-who-china-joint-mission-on-coronavirus-disease-2019-(Covid-19)

  22. Wu, Z., & Mc-Googan, M.J. (2020). Characteristics of and Important lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases from the Chinese Center for Disease Control and Prevention. Journal of the American Medical Association, 323(13), 1239-1242.

  23. Zhou, P., Yang, X.L., Wang, X.G., Hu, B., Zhang, L., Zhang, W., Si, H.R., Zhu, Y., Li, B., Huang, C.L., Chen, H.D., Chen, J., Luo, Y., Guo, H., Jiang, R.D., Liu, M.Q., Chen, Y., Shen, X.R., Wang, X., Zheng, X.S., Zhao, K., Chen, Q.J., Deng, F., Liu, L.L., Yan, B., Zhan, F.X., Wang, Y.Y., Xiao G.F., & Shi, Z.L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579, 270–273.

  24. Zou, L., Ruan, F., Huang, M., Liang, L., Huang, H., Hong, Z., Yu, J., Kang, M., Song, Y., Xia, J., Guo, Q., Song, T., He, J., Yen, H. L., Peiris, M., & Wu, J. (2020). SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. The New England Journal of Medicine, 382, 1177-1179.

Funding Information

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Declaration of Conflict

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.