Volume 2 (Issue 2)


Open Access

Review paper

Perspectives and Prospects of Probiotics in Aquaculture: A Review

Dhruv Dave*, Dhaval Prajapati, Dipika Pandya, Shreya Modi, Shreyas Bhatt

DD: Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India

DP: Mehsana Urban Institute of Sciences, Ganpat University, Mahesana 384012, Gujarat, India

DP: Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India

SM: Shri Sarvajanik Science College, Mehsana 384001, Gujarat, India

SB: Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India

*Corresponding author: Dhruv Dave; Email: ddp02@ganpatuniversity.ac.in; redgarden2009@gmail.com



08 June 2022


26 June 2022

Cite as: Dave, D., Prajapati, D., Pandya, D., Modi, S., & Bhatt, S. (2022). Perspectives and Prospects of Probiotics in Aquaculture: A Review. Inventum Biologicum, 2(2), 64-76. https://doi.org/10.5281/zenodo.5805008


The use of probiotics in aquaculture is now generally acknowledged due to the rising need for environmentally friendly aquaculture. But it is obvious that we need to know more about gut microbiology, optimal probiotic production, and probiotic safety evaluation. Probiotics, which have long been used to raise animals, are now being employed in aquaculture. Live cells or a substrate that enhances immune function, improves digestion, and stimulates development are referred to as probiotics. Probiotics can help enhance the quality of water. Because of their significance and future potential in aquaculture systems, probiotics are already frequently used. Commercial and local fish growing facilities in aquaculture systems can be promoted by more up-to-date probiotic production, validation, and usage. This article provides an overview of current knowledge about the use of probiotics in aquaculture, including a description of their application, possibilities, and challenges. It also defines probiotics and explains how they work.


Aquaculture, Colony forming units, Disease control, Growth, Probiotics, Survival


  1. Abd El-Rhman, A. M., Khattab, Y. A., & Shalaby, A. M. (2009). Micrococcus luteus and Pseudomonas species as probiotics for promoting the growth performance and health of Nile tilapia, Oreochromis niloticus. Fish & Shellfish Immunology, 27(2), 175-180.

  2. Ahmadifard, N., Aminlooi, V. R., Tukmechi, A., & Agh, N. (2019). Evaluation of the impacts of long-term enriched Artemia with Bacillus subtilis on growth performance, reproduction, intestinal microflora, and resistance to Aeromonas hydrophila of ornamental fish Poecilia latipinna. Probiotics and antimicrobial Proteins, 11(3), 957-965.

  3. Aly, S. M., Abd-El-Rahman, A. M., John, G., & Mohamed, M. F. (2008). Characterization of some bacteria isolated from Oreochromis niloticus and their potential use as probiotics. Aquaculture, 277(1-2), 1-6.

  4. Aly, S. M., Mohamed, M. F., & John, G. (2008).Effect of probiotics on the survival, growth and challenge Infection in Tilapia nilotica (Oreochromis niloticus). Aquaculture research, 39(6), 647-656.

  5. Austin, B., Stuckey, L. F., Robertson, P. A. W., Effendi, I., & Griffith, D. R. W. (1995). A probiotic strain of Vibrio alginolyticus effective in reducing diseases caused by Aeromonas salmonicida, Vibrio anguillarum and Vibrio ordalii. Journal of fish diseases, 18(1), 93-96.

  6. Bachère, E. (2003). Anti-infectious immune effectors in marine invertebrates: potential tools for disease control in larviculture. Aquaculture, 227(1-4), 427-438.

  7. Balcazar, J. L. (2002). Use of probiotics in aquaculture: general aspects. In Memoriasdel Primer CongresoIberoamericano Virtual de Acuicultura, Zaragoza, Spain (pp. 877-881).

  8. Balcázar, J. L., De Blas, I., Ruiz-Zarzuela, I., Cunningham, D., Vendrell, D., &Múzquiz, J. L. (2006).The role of probiotics in aquaculture. Veterinary microbiology, 114(3-4), 173-186.

  9. Balcázar, J. L., De Blas, I., Ruiz-Zarzuela, I., Vendrell, D., Calvo, A. C., Márquez, I., ...& Muzquiz, J. L. (2007). Changes in intestinal microbiota and humoral immune response following probiotic administration in brown trout (Salmo trutta). British journal of nutrition, 97(3), 522-527.

  10. Balcázar, J. L., Vendrell, D., de Blas, I., Ruiz-Zarzuela, I., Muzquiz, J. L., & Girones, O. (2008). Characterization of probiotic properties of lactic acid bacteria isolated from intestinal microbiota of fish. Aquaculture, 278(1-4), 188-191.

  11. Bentzon‐Tilia, M., Sonnenschein, E. C., & Gram, L. (2016). Monitoring and managing microbes in aquaculture–Towards a sustainable industry. Microbial biotechnology, 9(5), 576-584.

  12. Cao, J., Zhang, J., Ma, L., Li, L., Zhang, W., & Li, J. (2018). Identification of fish source Vibrio alginolyticus and evaluation of its bacterial ghosts vaccine immune effects. MicrobiologyOpen, 7(3), e00576.

  13. Capita, R., & Alonso-Calleja, C. (2013). Antibiotic-resistant bacteria: a challenge for the food industry. Critical reviews in food science and nutrition, 53(1), 11-48.

  14. Carnevali, O., Zamponi, M. C., Sulpizio, R., Rollo, A., Nardi, M., Orpianesi, C., ...& Cresci, A. (2004). Administration of probiotic strain to improve sea bream wellness during development. Aquaculture International, 12(4), 377-386.

  15. Chantharasophon, K., Warong, T., Mapatsa, P., & Leelavatcharamas, V. (2011).High potential probiotic Bacillus species from gastrointestinal tract of Nile tilapia (Oreochromis niloticus). Biotechnology, 10(6), 498-505.

  16. Chemlal-Kherraz, D., Sahnouni, F., Matallah-Boutiba, A., & Boutiba, Z. (2012). The probiotic potential of lactobacilli isolated from Nile tilapia (Oreochromis niloticus) 's intestine. African Journal of Biotechnology, 11(68), 13220-13227.

  17. Chemlal-Kherraz, D., Sahnouni, F., Matallah-Boutiba, A., & Boutiba, Z. (2012). The probiotic potential of lactobacilli isolated from Nile tilapia (Oreochromis niloticus) 's intestine. African Journal of Biotechnology, 11(68), 13220-13227.

  18. Chen, J., Ren, Y., Wang, G., Xia, B., & Li, Y. (2018). Dietary supplementation of biofloc influences growth performance, physiological stress, antioxidant status and immune response of juvenile sea cucumber Apostichopus japonicus (Selenka). Fish & shellfish immunology, 72, 143-152.

  19. Chen, S. W., Liu, C. H., & Hu, S. Y. (2019). Dietary administration of probiotic Paenibacillus ehimensis NPUST1 with bacteriocin-like activity improves growth performance and immunity against Aeromonas hydrophila and Streptococcus iniae in Nile tilapia (Oreochromis niloticus). Fish & shellfish immunology, 84, 695-703.

  20. Chi, C., Jiang, B., Yu, X. B., Liu, T. Q., Xia, L., & Wang, G. X. (2014). Effects of three strains of intestinal autochthonous bacteria and their extracellular products on the immune response and disease resistance of common carp, Cyprinus carpio. Fish & shellfish immunology, 36(1), 9-18.

  21. Chi, C., Liu, J. Y., Fei, S. Z., Zhang, C., Chang, Y. Q., Liu, X. L., & Wang, G. X. (2014). Effect of intestinal autochthonous probiotics isolated from the gut of sea cucumber (Apostichopus japonicus) on immune response and growth of A. japonicus. Fish & shellfish immunology, 38(2), 367-373.

  22. Chythanya, R., Karunasagar, I., & Karunasagar, I. (2002).Inhibition of shrimp pathogenic vibrios by a marine Pseudomonas I-2 strain. Aquaculture, 208(1-2), 1-10.

  23. Dall, W. I. L. L. I. A. M., & Moriarty, D. J. (1983).Functional aspects of nutrition and digestion. The biology of Crustacea, 5, 215-261.

  24. Dalmin, G., Kathiresan, K., & Purushothaman, A. (2001).Effect of probiotics on bacterial population and health status of shrimp in culture pond ecosystem.

  25. Dawood, M. A., Abo-Al-Ela, H. G., & Hasan, M. T. (2020). Modulation of transcriptomic profile in aquatic animals: Probiotics, prebiotics and synbiotics scenarios. Fish & shellfish immunology, 97, 268-282.

  26. Defoirdt, T., Boon, N., Sorgeloos, P., Verstraete, W., & Bossier, P. (2007). Alternatives to antibiotics to control bacterial infections: luminescent vibriosis in aquaculture as an example. Trends in biotechnology, 25(10), 472-479.

  27. Dhruv, D., Pandya, D., Prajapati, C., & Bhatt, S. (2021). Assessing Probiotic Potential of Gut Microflora from Indian Major Carps.

  28. Dopazo, C. P., Lemos, M. L., Lodeiros, C., Bolinches, J., Barja, J. L., & Toranzo, A. E. (1988).Inhibitory activity of antibiotic‐producing marine bacteria against fish pathogens. Journal of Applied Bacteriology, 65(2), 97-101.

  29. Ebner, S., Smug, L. N., Kneifel, W., Salminen, S. J., & Sanders, M. E. (2014). Probiotics in dietary guidelines and clinical recommendations outside the European Union. World Journal of Gastroenterology: WJG, 20(43), 16095.

  30. Etyemez, M., & Balcazar, J. L. (2016).Isolation and characterization of bacteria with antibacterial properties from Nile tilapia (Oreochromis niloticus). Research in veterinary science, 105, 62-64.

  31. Fdhila, K., Haddaji, N., Chakroun, I., Dhiaf, A., Macherki, M. E. E., Khouildi, B., ...& Missaoui, H. (2017). Culture conditions improvement of Crassostrea gigas using a potential probiotic Bacillus sp strain. Microbial pathogenesis, 110, 654-658.

  32. C, J., Chang, X., Zhang, Y., Yan, X., Zhang, J., & Nie, G. (2019).Effects of Lactococcus lactis from Cyprinus carpio L. as probiotics on growth performance, innate immune response and disease resistance against Aeromonas hydrophila. Fish & shellfish immunology, 93, 73-81.

  33. Food and Agriculture Organization (2020). Sustainability in action. State of World Fisheries and Aquaculture.Rome, 200.

  34. Fuller, R. (1992). History and development of probiotics.In Probiotics (pp. 1-8).Springer, Dordrecht.

  35. Gao, F., Liao, S., Liu, S., Bai, H., Wang, A., & Ye, J. (2019). The combination use of Candida tropicalis HH8 and Pseudomonas stutzeri LZX301 on nitrogen removal, biofloc formation and microbial communities in aquaculture. Aquaculture, 500, 50-56.

  36. Garriques, D. (1995). An evaluation of the Production and use of a live bacterial isolate to manipulate the microbial flora in the commercial Production of Penaeus vennamei postlarvae in Ecuador. Swimming through troubled water.Proceedings of the special session on shrimp farming, Aquaculture'95. World Aquaculture Societ, 53-59.

  37. Gatesoupe, F. J. (2002). Probiotic and formaldehyde treatments of Artemianauplii as food for larval pollack, Pollachiuspollachius. Aquaculture, 212(1-4), 347-360.

  38. Gobinath, J., & Ramanibai, R. (2012). Effect of probiotic bacteria culture on pathogenic bacteria from fresh water fish Oreochromis massambicus. J Mod Biotechnol, 1(1), 50-54.

  39. Gomez-Gil, B., Herrera-Vega, M. A., Abreu-Grobois, F. A., & Roque, A. (1998).Bioencapsulation of two different Vibrio species in nauplii of the brine shrimp (Artemia franciscana). Applied and environmental microbiology, 64(6), 2318-2322.

  40. Gram, L., Løvold, T., Nielsen, J., Melchiorsen, J., & Spanggaard, B. (2001). In vitro antagonism of the probiont Pseudomonas fluorescens strain AH2 against Aeromonas salmonicida does not confer protection of salmon against furunculosis. Aquaculture, 199(1-2), 1-11.

  41. Gram, L., Melchiorsen, J., Spanggaard, B., Huber, I., & Nielsen, T. F. (1999).Inhibition of Vibrio anguillarum by Pseudomonas fluorescens AH2, a possible probiotic treatment of fish. Applied and environmental microbiology, 65(3), 969-973.

  42. Grenni, P., Ancona, V., &Caracciolo, A. B. (2018). Ecological effects of antibiotics on natural ecosystems: A review. Microchemical Journal, 136, 25-39.

  43. Grześkowiak, Ł., Collado, M. C., & Salminen, S. (2012). Evaluation of aggregation abilities between commensal fish bacteria and pathogens. Aquaculture, 356, 412-414.

  44. He, S., Zhang, Y., Xu, L., Yang, Y., Marubashi, T., Zhou, Z., & Yao, B. (2013).Effects of dietary Bacillus subtilis C-3102 on the Production, intestinal cytokine expression and autochthonous bacteria of hybrid tilapia Oreochromis niloticus♀× Oreochromis aureus♂. Aquaculture, 412, 125-130.

  45. Hotel, A. C. P., & Cordoba, A. (2001). Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Prevention, 5(1), 1-10.

  46. Irianto, A., & Austin, B. (2002).Probiotics in aquaculture. Journal of fish diseases, 25(11), 633-642.

  47. Karunasagar, I., Pai, R., Malathi, G. R., &Karunasagar, I. (1994).Mass mortality of Penaeus monodon larvae due to antibiotic-resistant Vibrio harveyi infection. Aquaculture, 128(3-4), 203-209.

  48. Kesarcodi-Watson, A., Kaspar, H., Lategan, M. J., & Gibson, L. (2008). Probiotics in aquaculture: the need, principles and mechanisms of action and screening processes. Aquaculture, 274(1), 1-14.

  49. Khaneghah, A. M., Abhari, K., Eş, I., Soares, M. B., Oliveira, R. B., Hosseini, H., ...& Sant’Ana, A. S. (2020). Interactions between probiotics and pathogenic microorganisms in hosts and foods: A review. Trends in Food Science & Technology, 95, 205-218.

  50. Kuebutornye, F. K., Abarike, E. D., & Lu, Y. (2019).A review on the application of Bacillus as probiotics in aquaculture. Fish & shellfish immunology, 87, 820-828.

  51. Kuebutornye, F. K., Abarike, E. D., Lu, Y., Hlordzi, V., Sakyi, M. E., Afriyie, G., ...& Xie, C. X. (2020). Mechanisms and the role of probiotic Bacillus in mitigating fish pathogens in aquaculture. Fish physiology and biochemistry, 1-23.

  52. Lang, J. C., & Chornesky, E. A. (1990). Competition between scleractinian reef corals-a review of mechanisms and effects. Ecosystems of the world, 25, 209-252.

  53. Lara-Flores, M. (2011). The use of probiotic in aquaculture: an overview. Int Res J Microbiol, 2(12), 471-478.

  54. Lara-Flores, M., Olvera-Novoa, M. A., Guzmán-Méndez, B. E., & López-Madrid, W. (2003).Use of the bacteria Streptococcus faecium and Lactobacillus acidophilus, and the yeast Saccharomyces cerevisiae as growth promoters in Nile tilapia (Oreochromis niloticus). Aquaculture, 216(1-4), 193-201.

  55. Lewin, C. S. (1992). Mechanisms of resistance development in aquatic microorganisms. Chemotherapy in Aquaculture: from Theory to Reality. Office International des Epizooties, Paris, France, 288-301.

  56. Liu, K. F., Chiu, C. H., Shiu, Y. L., Cheng, W., & Liu, C. H. (2010). Effects of the probiotic, Bacillus subtilis E20, on the survival, development, stress tolerance, and immune status of white shrimp, Litopenaeus vannamei larvae. Fish & shellfish immunology, 28(5-6), 837-844.

  57. Matias, H. B., Yusoff, F. M., Shariff, M., &Azhar, O. (2002). Effects of commercial microbial products on water quality in tropical shrimp culture ponds. Asian Fisheries Science, 15(3), 239-248.

  58. Middlemiss, K. L., Daniels, C. L., Urbina, M. A., & Wilson, R. W. (2015).Combined effects of UV irradiation, ozonation, and the probiotic Bacillus spp. on growth, survival, and general fitness in European lobster (Homarusgammarus). Aquaculture, 444, 99-107.

  59. Monteagudo-Mera, A., Rastall, R. A., Gibson, G. R., Charalampopoulos, D., & Chatzifragkou, A. (2019). Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Applied microbiology and biotechnology, 103(16), 6463-6472.

  60. Moriarty, D. J. (1999).Disease control in shrimp aquaculture with probiotic bacteria.In Proceedings of the 8th international symposium on microbial ecology (pp. 237-243).Atlantic Canada Society for Microbial EcologyHalifax.

  61. Mulder, R. W. A. W., Havenaar, R., & Huis, J. H. J. (1997). Intervention strategies: the use of probiotics and competitive exclusion microfloras against contamination with pathogens in pigs and poultry. In Probiotics 2 (pp. 187-207). Springer, Dordrecht.

  62. Muñoz-Atienza, E., Gómez-Sala, B., Araújo, C., Campanero, C., Del Campo, R., Hernández, P. E., ...& Cintas, L. M. (2013). Antimicrobial activity, antibiotic susceptibility and virulence factors of lactic acid bacteria of aquatic origin intended for use as probiotics in aquaculture. BMC microbiology, 13(1), 1-22.

  63. Nandi, A., Dan, S. K., Banerjee, G., Ghosh, P., Ghosh, K., Ringø, E., & Ray, A. K. (2017). Probiotic potential of autochthonous bacteria isolated from the gastrointestinal tract of four freshwater teleosts. Probiotics and antimicrobial proteins, 9(1), 12-21.

  64. Nimrat, S., Suksawat, S., Boonthai, T., & Vuthiphandchai, V. (2012). Potential Bacillus probiotics enhance bacterial numbers, water quality and growth during early development of white shrimp (Litopenaeus vannamei). Veterinary microbiology, 159(3-4), 443-450.

  65. Nogami, K., & Maeda, M. (1992).Bacteria as biocontrol agents for rearing larvae of the crab Portunustrituberculatus. Canadian Journal of fisheries and aquatic sciences, 49(11), 2373-2376.

  66. Nogami, K., Hamasaki, K., Maeda, M., & Hirayama, K. (1997). Biocontrol method in aquaculture for rearing the swimming crab larvae Portunustrituberculatus.In Live food in aquaculture(pp. 291-295). Springer, Dordrecht.

  67. Noor, Z., Noor, M., Khan, I., & Khan, S. A. (2020). Evaluating the lucrative role of probiotics in the aquaculture using microscopic and biochemical techniques. Microscopy research and technique, 83(3), 310-317.

  68. Olsson, J. C., Westerdahl, A. L. L. A. N., Conway, P. L., &Kjelleberg, S. T. A. F. F. A. N. (1992). Intestinal colonization potential of turbot (Scophthalmus maximus)-and dab (Limandalimanda)-associated bacteria with inhibitory effects against Vibrio anguillarum. Applied and Environmental Microbiology, 58(2), 551-556.

  69. Onarheim, A. M., Wiik, R., Burghardt, J., &Stackebrandt, E. (1994). Characterization and identification of two Vibrio species indigenous to the intestine of fish in cold sea water; description of Vibrio iliopiscarius sp. nov. Systematic and Applied Microbiology, 17(3), 370-379.

  70. Panigrahi, A., & Azad, I. S. (2007). Microbial intervention for better fish health in aquaculture: the Indian scenario. Fish physiology and biochemistry, 33(4), 429-440.

  71. Parker, R. B. (1974). Probiotics, the other half of the antibiotic story. AnimNutr Health, 29, 4-8.

  72. Pond, M. J., Stone, D. M., & Alderman, D. J. (2006).Comparison of conventional and molecular techniques to investigate the intestinal microflora of rainbow trout (Oncorhynchus mykiss). Aquaculture, 261(1), 194-203.

  73. Prieur, D., Mevel, G., Nicolas, J. L., Plusquellec, A., & Vigneulle, M. (1990).Interactions between bivalve molluscs and bacteria in the marine environment. Oceanogr. Mar. Biol. Annu. Rev, 28, 277-352.

  74. Qin, C., Zhang, Z., Wang, Y., Li, S., Ran, C., Hu, J., ...& Zhou, Z. (2017). EPSP of L. casei BL23 Protected against the Infection Caused by Aeromonas veronii via Enhancement of Immune Response in Zebrafish. Frontiers in microbiology, 8, 2406.

  75. Ran, C., Huang, L., Liu, Z., Xu, L., Yang, Y., Tacon, P., ...& Zhou, Z. (2016). Correction: A Comparison of the Beneficial Effects of Live and Heat-Inactivated Baker's Yeast on Nile Tilapia: Suggestions on the Role and Function of the Secretory Metabolites Released from the Yeast. PloS one, 11(3), e0151207.

  76. Rengpipat, S., Rukpratanporn, S., Piyatiratitivorakul, S., & Menasaveta, P. (2000). Immunity enhancement in black tiger shrimp (Penaeus monodon) by a probiont bacterium (BacillusS11). Aquaculture, 191(4), 271-288.

  77. Rengpipat, S., Tunyanun, A., Fast, A. W., Piyatiratitivorakul, S., &Menasveta, P. (2003). Enhanced growth and resistance to Vibrio challenge in pond-reared black tiger shrimp Penaeus monodon fed a Bacillus probiotic. Diseases of aquatic organisms, 55(2), 169-173.

  78. Ringø, E., Strøm, E., & Tabachek, J. A. (1995). Intestinal microflora of salmonids: a review. Aquaculture Research, 26(10), 773-789.

  79. Rinkinen, M., Jalava, K., Westermarck, E., Salminen, S., &Ouwehand, A. C. (2003). Interaction between probiotic lactic acid bacteria and canine enteric pathogens: a risk factor for intestinal Enterococcus faecium colonization?. Veterinary microbiology, 92(1-2), 111-119.

  80. Romero, J., Feijoó, C. G., & Navarrete, P. (2012).Antibiotics in aquaculture–use, abuse and alternatives. Health and environment in aquaculture, 159.

  81. Rosenfeld, W. D., &ZoBell, C. E. (1947).Antibiotic Production by marine microorganisms. Journal of bacteriology, 54(3), 393-398.

  82. Sakata, T. (1990).Microflora in digestive tract of fish and shell fish. Microbiology in Poeciloterms.

  83. Salminen, S., Bouley, C., Boutron, M. C., Cummings, J. H., Franck, A., Gibson, G. R., ...& Rowland, I. (1998). Functional food science and gastrointestinal physiology and function. British journal of nutrition, 80(S1), S147-S171.

  84. Salunke, M., Kalyankar, A., Khedkar, C. D., Shingare, M., &Khedkar, G. D. (2020). A review on shrimp aquaculture in India: historical perspective, constraints, status and future implications for impacts on aquatic ecosystem and biodiversity. Reviews in Fisheries Science & Aquaculture, 28(3), 283-302.

  85. Sotomayor, M. A., & Balcázar, J. L. (2016).Inhibición de vibrios patógenos de camarón por mezclas de cepas probióticas. Revista AquaTIC, (19).

  86. Spanggaard, B., Huber, I., Nielsen, J., Sick, E. B., Pipper, C. B., Martinussen, T., ...& Gram, L. (2001). The probiotic potential against vibriosis of the indigenous microflora of rainbow trout. Environmental microbiology, 3(12), 755-765.

  87. Standen, B. T., Rawling, M. D., Davies, S. J., Castex, M., Foey, A., Gioacchini, G., ...& Merrifield, D. L. (2013). Probiotic Pediococcus acidilactici modulates both localised intestinal-and peripheral-immunity in tilapia (Oreochromis niloticus). Fish & shellfish immunology, 35(4), 1097-1104.

  88. Sun, W., Liang, J., Yang, Y., Wu, Y., Yan, T., & Song, R. (2016).Investigating aging-related changes in the coordination of agonist and antagonist muscles using fuzzy entropy and mutual information. Entropy, 18(6), 229.

  89. Vandak, D., Telgarský, M., & Šturdík, E. (1995). Influence of growth factor supplements on butyric acid production from sucrose byClostridium butyricum. Folia microbiologica, 40(6), 669-672.

  90. Venkat, H. K., Sahu, N. P., & Jain, K. K. (2004). Effect of feeding Lactobacillus‐based probiotics on the gut microflora, growth and survival of postlarvae of Macrobrachium rosenbergii (de Man). Aquaculture Research, 35(5), 501-507.

  91. Verschuere, L., Rombaut, G., Sorgeloos, P., &Verstraete, W. (2000). Probiotic bacteria as biological control agents in aquaculture. Microbiology and molecular biology reviews, 64(4), 655-671.

  92. Vijayaram, S., & Kannan, S. (2018). Probiotics: The marvelous factor and health benefits. Biomedical and Biotechnology Research Journal (BBRJ), 2(1), 1.

  93. Wang, J., Yang, H. L., Xia, H. Q., Ye, J. D., Lu, K. L., Hu, X., ... & Sun, Y. Z. (2018). Supplementation of heat‐inactivated Bacillus clausii DE 5 in diets for grouper, Epinephelus coioides, improves feed utilization, intestinal and systemic immune responses and not growth performance. Aquaculture Nutrition, 24(2), 821-831.

  94. Wang, Y. B., & Han, J. Z. (2007).The role of probiotic cell wall hydrophobicity in bioremediation of aquaculture. Aquaculture, 269(1-4), 349-354.

  95. Wang, Y., &Gu, Q. (2010). Effect of probiotics on white shrimp (Penaeus vannamei) growth performance and immune response. Marine Biology Research, 6(3), 327-332.

  96. Wu, S., Gao, T., Zheng, Y., Wang, W., Cheng, Y., & Wang, G. (2010). Microbial diversity of intestinal contents and mucus in yellow catfish (Pelteobagrus fulvidraco). Aquaculture, 303(1-4), 1-7.

  97. Xia, Z., Zhu, M., & Zhang, Y. (2014). Effects of the probiotic A rthrobacter sp. CW 9 on the survival and immune status of white shrimp (P. enaeus vannamei). Letters in applied microbiology, 58(1), 60-64.

  98. Xie, S., Zheng, L., Wan, M., Niu, J., Liu, Y., & Tian, L. (2018). Effect of deoxynivalenol on growth performance, histological morphology, anti-oxidative ability and immune response of juvenile Pacific white shrimp, Litopenaeus vannamei. Fish & shellfish immunology, 82, 442-452.

  99. Xu, Y., Wang, Y., & Lin, J. (2014).Use of Bacillus coagulans as a Dietary Probiotic for the Common Carp, Cyprinus carpio. Journal of the World Aquaculture society, 45(4), 403-411.

  100. Yan, F., Tian, X., & Dong, S. (2014). Effect of Bacillus baekryungensis YD13 supplemented in diets on growth performance and immune response of sea cucumber (Apostichopus japonicus). Journal of Ocean University of China, 13(5), 805-810.

  101. Yi, Y., Zhang, Z., Zhao, F., Liu, H., Yu, L., Zha, J., & Wang, G. (2018). Probiotic potential of Bacillus velezensis JW: antimicrobial activity against fish pathogenic bacteria and immune enhancement effects on Carassius auratus. Fish & shellfish immunology, 78, 322-330.

  102. Zhang, C. N., Zhang, J. L., Guan, W. C., Zhang, X. F., Guan, S. H., Zeng, Q. H., ... & Cui, W. (2017). Effects of Lactobacillus delbrueckii on immune response, disease resistance against Aeromonas hydrophila, antioxidant capability and growth performance of Cyprinus carpio Huanghe var. Fish & shellfish immunology, 68, 84-91.

  103. Zheng, X., Duan, Y., Dong, H., & Zhang, J. (2017). Effects of dietary Lactobacillus Plantarum in different treatments on growth performance and immune gene expression of white shrimp Litopenaeus vannamei under normal condition and stress of acute low salinity. Fish & shellfish immunology, 62, 195-201.

  104. Zhou, X. X., Wang, Y. B., & Li, W. F. (2009). Effect of probiotic on larvae shrimp (Penaeus vannamei) based on water quality, survival rate and digestive enzyme activities. Aquaculture, 287(3-4), 349-353.

  105. Zhou, X., Tian, Z., Wang, Y., & Li, W. (2010).Effect of treatment with probiotics as water additives on tilapia (Oreochromis niloticus) growth performance and immune response. Fish physiology and biochemistry, 36(3), 501-509.

  106. Zorriehzahra, M. J., Delshad, S. T., Adel, M., Tiwari, R., Karthik, K., Dhama, K., & Lazado, C. C. (2016). Probiotics as beneficial microbes in aquaculture: an update on their multiple modes of action: a review. Veterinary quarterly, 36(4), 228-241.

Funding Information

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Declaration of Conflict

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.