Volume 1 (Issue 1)

pp. 25-36

Open Access

Review paper

Bioremediation through Biosurfactants: A Promising Remedy for Oil Spill Contaminated Soil

Smarika Lawrance*, Anjali Dsouza

SL, AD: Department of Chemistry, St. Aloysius College (Autonomous),  Jabalpur 48200, Madhya Pradesh, India


*Corresponding author: Smarika Lawrance; Email: smarikasheeba@gmail.com

DOI:

Received: 

16 November 2020

Published:

06 December 2021

Cite as: Lawrance, S., & Dsouza, A. (2021). Bioremediation through Biosurfactants: A Promising Remedy for Oil Spill Contaminated Soil. Inventum Biologicum, 1(1), 25–36. https://doi.org/10.5281/zenodo.5846816

Abstract

Contamination of soil by oil is a major cause of concern and environmental pollution at large globally. Rapid industrialization is posing a threat of oil spills at land and in sea due to continuous increasing dependence on petroleum and its derivatives. Nearly half of the world’s oil production is transported to developed and developing nations by railways or roadways worldwide. Oil spills on land effects the soil and its properties rendering it unsuitable for plants, animals, human life and soil ecosystem. Removal and mitigation of oil and its derivatives is imperative to restore the health and biophysical properties of soil. Understanding the damages and dangers associated with oil spills the present chapter focuses comparison of surfactants with biosurfactants and their superiority over surfactants. The present chapter also focuses on the types and potential applications of biosurfactants in bioremediation of environmental pollution caused by oil spills.

Keywords:

Soil pollution, Hydrocarbons, Oil spills, Surfactants, Biosurfactants, Bioremediation

References

  1. Adhikari, K., & Hartemink, A. E. (2016). Linking soils to ecosystem services—A global review Geoderma, 262, 101–111.

  2. Akbari, S., Abdurahman, N. H., Yunus, R. M., Fayaz, F., & Alara, O. R. (2018). Biosurfactants----a new frontier for social and environmental safety: A mini review. Biotechnology Research and Innovation, 2(1), 81–90. https://doi.org/10.1016/j.biori.2018.09.001

  3. Al-Araji, L., Rahman, R. N. Z., Basri, M., & Salleh, A. B. (2007). Mini review: Microbial surfactant. Asia-Pacific Journal of Molecular Biology and Biotechnology, 15, 99–105.

  4. Alencar, T. D. S., Santos de Oliveira, V. D. P., De Oliveira, M. M., & Saraiva, V. B. (2016). Contaminação por metais pesados e hidrocarbonetos de petróleo: Uma ameaça para os manguezais. Boletim do Observatório Ambiental Alberto Ribeiro Lamego, 10(2), 7–24. https://doi.org/10.19180/2177-4560.v10n22016p7-24

  5. Alisi, C., Musella, R., Tasso, F., Ubaldi, C., Manzo, S., Cremisini, C., & Sprocati, A. R. (2009). Bioremediation of diesel oil in a co-contaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance. Science of the Total Environment, 407(8), 3024–3032. https://doi.org/10.1016/j.scitotenv.2009.01.011

  6. Almeida, D. G., Soares da Silva, R. D. C. F., Brasileiro, P. P. F., de Luna, J. M., Da Silva, M. D. G. C., Rufin, R. D., Costa, A. F. S., Santos, V. A., & Sarubbo, L. A. (2018). Application of a biosurfactant from Candida tropicalis ucp 0996 produced in low-cost substrates for hydrophobic contaminants removal. Chemical Engineering Transactions, 64, 541–546.

  7. Amaral, I. C. C., de Carvalho, L. V. B., da Silva Pimentel, J. N., Pereira, A. C., Vieira, J. A., de Castro, V. S., Borges, R. M., Alves, S. R., Nogueira, S. M., Tabalipa, M. et al. (2017). Avaliaçãoambiental de BTEX (benzeno, tolueno, etilbenzeno, xilenos) e biomarcadores de genotoxicidadeemtrabalhadores de postos de combustíveis. Rev. Bras. SaúdeOcup, 42, 1–4.

  8. Appannagari, R. (2017). Environmental pollution causes and consequences: A study north Asian international research. Journal of Social Science & Humanities, 3, 151–161.

  9. Athar, H. U., Ambreen, S., Javed, M., Hina, M., Rasul, S., Zafar, Z. U., Manzoor, H., Ogbaga, C. C., Afzal, M., Al-Qurainy, F., & Ashraf, M. (2016). Influence of sub-lethal crude oil concentration on growth, water relations and photosynthetic capacity of maize (Zea mays L.) plants. Environmental Science and Pollution Research International, 23(18), 18320–18331. https://doi.org/10.1007/s11356-016-6976-7

  10. Balachandran, C., Duraipandiyan, V., Balakrishna, K., & Ignacimuthu, S. (2012). Petroleum and polycyclic aromatic hydrocarbons (PAHs) degradation and naphthalene metabolism in Streptomyces sp. (ERI-CPDA-1) isolated from oil contaminated soil. Bioresource Technology, 112, 83–90. https://doi.org/10.1016/j.biortech.2012.02.059

  11. Banat, I. M., Franzetti, A., Gandolfi, I., Bestetti, G., Martinotti, M. G., Fracchia, L., Smyth, T. J., & Marchant, R. (2010). Microbial biosurfactants production, application and future potential. Applied Microbiology and Biotechnology, 87(2), 427–444. https://doi.org/10.1007/s00253-010-2589-0

  12. Baniasadi, M., & Mousavi, S. M. (2019). A comprehensive review on the bioremediation of oil spills. In V. K. M. K. R. Prasad (Ed.), Microbial action on hydrocarbons springer (pp. 223–254). Nature Publishing.

  13. Befkadu, A. A., & Chen, Q. Y. (2018). Soil washing for removal of hydrocarbons pedosphere, 28, 383–410.

  14. Bhardwaj, G., Cameotra, S. S., & Chopra, H. K. (2013). Biosurfactants from fungi: A review. Journal of Petroleum and Environmental Biotechnology, 4, 160

  15. Burger, M. M., Glaser, L., & Burton, R. M. (1963). The enzymatic synthesis of a rhamnose-containing glycolipid by extracts of Pseudomonas aeruginosa. Journal of Biological Chemistry, 238, 2595–2602. https://doi.org/10.1016/S0021-9258(18)67872-X

  16. Chaprão, M. J., Ferreira, I. N. S., Correa, P. F., Rufino, R. D., Luna, J. M., Silva, E. J., & Sarubbo, L. A. (2015). Application of bacterial and yeast biosurfactants for enhanced removal and biodegradation of motor oil from contaminated sand. Electronic Journal of Biotechnology, 18(6), 471–479. https://doi.org/10.1016/j.ejbt.2015.09.005

  17. Chen, D. Y., Xing, B. S., & Xie, W. B. (2007). Sorption of phenanthrene, naphthalene and o-xylene by soil organic matter fractions Geoderma, 139, 329–335.

  18. Chomiczewska, I. E., Mędrzycka, K., & Karpenko, E. (2011). Biosurfactants–biodegradability, toxicity, efficiency in comparison with synthetic surfactants. In Proceedings of the Polish-Swedish-Ukrainian Seminar “Research and Application of New Technologies in Wastewater Treatment and Municipal Solid Waste Disposal in Ukraine, Sweden, and Poland Krakow 1–9.

  19. Christova, N., Lang, S., Wray, V., Kaloyanov, K., Konstantinov, S., & Stoineva, I. (2015). Production, structural elucidation and in vitro antitumor activity of trehalose lipid biosurfactant from Nocardia farcinica strain. Journal of Microbiology and Biotechnology, 25(4), 439–447. https://doi.org/10.4014/jmb.1406.06025

  20. Cooper, D. G., & Paddock, D. A. (1984). Production of a biosurfactant from Torulopsisbombicola. Applied and Environmental Microbiology, 47(1), 173–176. https://doi.org/10.1128/aem.47.1.173-176.1984

  21. Cumo, F., Gugliermetti, F., & Guidi, G. (2007). Best available techniques for oil spill containment and clean-up in the Mediterranean Sea. WIT Transactions on Ecology and the Environment, 103, 527–535.

  22. Cutler, A. J., & Light, R. J. (1979). Regulation of hydroxydocosanoic acid sophoroside production in Candida bogoriensis by the levels of glucose and yeast extract in the growth medium. Journal of Biological Chemistry, 254(6), 1944–1950. https://doi.org/10.1016/S0021-9258(17)37748-7

  23. de Cássia F S Silva, R., Almeida, D. G., Rufino, R. D., Luna, J. M., Santos, V. A., & Sarubbo, L. A. (2014). Applications of biosurfactants in the petroleum industry and the remediation of oil spills. International Journal of Molecular Sciences, 15(7), 12523–12542. https://doi.org/10.3390/ijms150712523

  24. Desai, J. D., & Banat, I. M. (1997). Microbial production of surfactants and their commercial po‐tential. Microbiology and Molecular Biology Reviews, 61(1), 47–64. https://doi.org/10.1128/mmbr.61.1.47-64.1997

  25. Desai, J. D., & Banat, I. M. (1997). Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews, 61(1), 47–64. https://doi.org/10.1128/mmbr.61.1.47-64.1997

  26. Fenibo, E. O., Ijoma, G. N., Selvarajan, R., & Chikere, C. B. (2019). Microbial surfactants: The next generation multifunctional biomolecules for applications in the petroleum industry and its associated environmental remediation. Microorganisms, 7(11), 581. https://doi.org/10.3390/microorganisms7110581

  27. Guerra-Santos, L., Kappeli, O., & Fiechter, A. (1986). Dependence of Pseudomonas aeruginosa continuous culture biosurfactant production on nutritional and environmental factor. Applied Microbiology and Biotechnology, 24, 443–448.

  28. Gupta, N., & Verma, A. (2011). Characterization of biosurfactant production by mutant strain of Candida tropicalis. Singapore 2nd International Conference on Environmental Science and Technology IACSIT Press, 6(pp. 133–136).

  29. Hoang, A., Pham, V., & Nguyen, D. (2018). A report of oil spill recovery technologies. International Journal of Applied Engineering Research, 13, 4915–4928.

  30. Idris, J., Eyu, G., Ahmad, Z., & Chukwuekezie, C. (2013). Oil spills and sustainable cleanup approach. Australian Journal of Basic and Applied Sciences, 7, 272–280.

  31. Ivshina, I. B., Kuyukina, M. S., Krivoruchko, A. V., Elkin, A. A., Makarov, S. O., Cunningham, C. J., Peshkur, T. A., Atlas, R. M., & Philp, J. C. (2015). Oil spill problems and sustainable response strategies through new technologies. Environmental Science. Processes and Impacts, 17(7), 1201–1219. https://doi.org/10.1039/c5em00070j

  32. Jorfi, S., Rezaee, A., Jaafarzadeh, N. A., Esrafili, A., Akbari, H. et al. (2014). Bioremediation of pyrene-contaminated soils using biosurfactant, Jentashapir. Journal of Cell and Molecular Biology, 5.

  33. Kang, S. W., Kim, Y. B., Shin, J. D., & Kim, E. K. (2010). Enhanced biodegradation of hydrocarbons in soil by microbial biosurfactant, sophorolipid. Applied Biochemistry and Biotechnology, 160(3), 780–790. https://doi.org/10.1007/s12010-009-8580-5

  34. Kapoor, A. et al. (2019). A comprehensive study on causes of oil spills and remediation—A review. Acta Scientific Microbiology, 2, 157–159.

  35. Kardena, E., Helmy, Q., & Funamizu, N. (2014). Biosurfactants and Soil Bioremediation biosurfactant—Production and utilization- Processes, production and technology (pp. 327–360). CRC Press.

  36. Kitamoto, D., Isoda, H., & Nakahara, T. (2002). Functions and potential applications of glycolipid biosurfactant from energy-saving materials to gene delivery carriers. Journal of Bioscience and Bioengineering, 94(3), 187–201. https://doi.org/10.1263/jbb.94.187

  37. Kreling, N. E., Zaparoli, M., Margarites, A. C., Friedrich, M. T., Thomé, A., & Colla, L. M. et al. (2020). Extracellular biosurfactants from yeast and soil–biodiesel interactions during bioremediation. International Journal of Environmental Science and Technology, 17(1), 395–408. https://doi.org/10.1007/s13762-019-02462-9

  38. Li, F. et al. (2018). Analysis, treatment and countermeasures on oil spills at sea I OP Conference Series. Materials Science and Engineering, 397.

  39. Liu, J. F., Mbadinga, S. M., Yang, S. Z., Gu, J. D., & Mu, B. Z. (2015). Chemical structure, property and potential applications of biosurfactants produced by Bacillus subtilis in petroleum recovery and spill mitigation. International Journal of Molecular Sciences, 16(3), 4814–4837. https://doi.org/10.3390/ijms16034814

  40. Makkar, R. S., Cameotra, S. S., & Banat, I. M. (2011). Advances in utilization of renewable substrates for biosurfactant production. Applied Microbiology and Biotechnology, 1, 1–5

  41. Maneerat, S. (2005). Production of biosurfactants using substrates from renewable-re‐ sources. Songklanakarin Journal of Science and Technology, 27, 675–683.

  42. Mao, X., Jiang, R., Xiao, W., & Yu, J. (2015). Use of surfactants for the remediation of contaminated soils: A review. Journal of Hazardous Materials, 285, 419–435. https://doi.org/10.1016/j.jhazmat.2014.12.009

  43. Marinescu, M. et al. (2001). The effects of crude oil pollution on physical and chemical characteristics of soil. Research Journal of Agricultural Science, 43, 125–129.

  44. Marta, C., Casarrubias, M., Chavira, B., & Moorillón, G. (2015). Biosurfactants as useful tools in bioremediation. In N. Shiomi (Ed.), Advances in bioremediation of wastewater and polluted soil. IntechOpen.

  45. Mishra, R., Mohammad, N., & Roychoudhury, N. (2016). Soil pollution: Causes, effects and control Van Sangyan, 3, 1–14.

  46. Muthusamy, K., Gopalakrishnan, S., & Ravi, T. K. (2008). Biosurfactants: Properties, commercial production and application. Current Science, 94, 736–774.

  47. Muthusamy, K., Gopalakrishnan, S., Ravi, T., & Sivachidambaram, P. (2008). Biosurfactants: Properties, commercial production and application. Current Science, 94, 736–747.

  48. Odukoya, J., Lambert, R., & Sakrabani, R. (2019). Understanding the impacts of crude oil and its induced abiotic stresses on agrifood production: A review. Horticulturae, 5(2), 47. https://doi.org/10.3390/horticulturae5020047

  49. Okoliegbe, I. N., & Agarry, O. O. (2012). Application of microbial surfactant [A review]. Scholarly Journals of Biotechnology, 1, 15–23.

  50. Olasanmi, I., & Thring, R. (2018). The role of biosurfactants in the continued drive for environmental sustainability, 10, 4817.

  51. Pei, G. P., Sun, C. F., Zhu, Y. E., Shi, W. Y., & Li, H. (2018). Biosurfactant enhanced removal of o,p-dichlorobenzene from contaminated soil. Environmental Science and Pollution Research International, 25(1), 18–26. https://doi.org/10.1007/s11356-016-7711-0

  52. Phillips, L. A., Greer, C. W., & Germida, J. J. (2006). Culture-based and culture-independent assessment of the impact of mixed and single plant treatments on rhizosphere microbial communities in hydrocarbon contaminated flare-pit soil. Soil Biology and Biochemistry, 38(9), 2823–2833. https://doi.org/10.1016/j.soilbio.2006.04.038

  53. Rau, U., Nguyen, L. A., Roeper, H., Koch, H., & Lang, S. (2005). Downstream processing of manno‐sylerythritol lipids produced by Pseudozymaaphidis. European Journal of Lipid Science and Technology, 107(6), 373–380. https://doi.org/10.1002/ejlt.200401122

  54. Ron, E. Z., & Rosenberg. (2002). Biosurfactants and oil bioremediation Current Opinion in Bi‐otechnology, 13, 249–252.

  55. Rooney, A. P., Price, N. P., Ray, K. J., & Kuo, T. M. (2009). Isolation and characterization of rhamnolipid-producing bacterial strains from a biodiesel facility. FEMS Microbiology Letters, 295(1), 82–87. https://doi.org/10.1111/j.1574-6968.2009.01581.x

  56. Roy, A. (2017). A Review on the biosurfactants: Properties, types and its applications. Journal of Fundamentals of Renewable Energy and Applications, 08(1), 248. https://doi.org/10.4172/2090-4541.1000248

  57. Rufino, R. D., Luna, J. M., Marinho, P. H. C., Farias, C. B. B., Ferreira, S. R. M., & Sarubbo, L. A. (2013). Removal of petroleum derivative adsorbed to soil by biosurfactant Rufisan produced by Candida lipolytica. Journal of Petroleum Science and Engineering, 109, 117–122. https://doi.org/10.1016/j.petrol.2013.08.014

  58. Saha, P., & Rao, K. V. B. (2017). Biosurfactants A current perspective on production and applications nature environment and pollution technology an international quarterly scientific [Journal], 16, 181–188.

  59. Sajna, K. V., Sukumaran, R. K., Gottumukkala, L. D., & Pandey, A. (2015). Crude oil biodegradation aided by biosurfactants from Pseudozyma sp. NII 08165 or its culture broth. Bioresource Technology, 191, 133–139. https://doi.org/10.1016/j.biortech.2015.04.126

  60. Sales da Silva, I. G., Gomes de Almeida, F. C., Padilha da Rocha e Silva, N. M., Casazza, A. A., Converti, A., & Asfora Sarubbo, L. (2020) Soil Bioremediation: Overview of Technologies and Trends. Energies, 13(18), 4664. https://doi.org/10.3390/en13184664

  61. Sarubbo, L. A., & Campos-Takaki, G. M. (2010). Candida biosurfactant-enhanced removal hydrophobic organic pollutants. In A. C. Mason (Ed.), Bioremediation: Biotechnology, engineering and environmental management (pp. 435–448). Nova Press Publishers.

  62. Sekhon Randhawa, K. K., & Rahman, P. K. (2014). Rhamnolipid biosurfactants—Past, present, and future scenario of global market. Frontiers in Microbiology, 5, 454. https://doi.org/10.3389/fmicb.2014.00454

  63. Shah, M. U. H., Moniruzzaman, M., Sivapragasam, M., Talukder, M. M. R., Yusup, S. B., & Goto, M. (2019). A binary mixture of a biosurfactant and an ionic liquid surfactant as a green dispersant for oil spill remediation. Journal of Molecular Liquids, 280, 111–119. https://doi.org/10.1016/j.molliq.2019.02.049

  64. Shah, N., Nikam, R., Gaikwad, S., Sapre, V., & Kaur, J. (2016). Biosurfactant: Types, detection methods, importance and applications. Indian Journal of Microbiology Research, 3(1), 5–10. https://doi.org/10.5958/2394-5478.2016.00002.9

  65. Shigenaka, G. (2011). Effects of oil in the environment in Oil Spill Science and Technology. In M. Fingas (Ed.), Gulf publishing company New York (pp. 985–1024).

  66. Silva, E. J., Correa, P. F., Almeida, D. G., Luna, J. M., Rufino, R. D., & Sarubbo, L. A. (2018). Recovery of contaminated marine environments by biosurfactant-enhanced bioremediation. Colloids and Surfaces. B, Biointerfaces, 172, 127–135. https://doi.org/10.1016/j.colsurfb.2018.08.034

  67. Soares da Silva, RdC. F., Almeida, D. G., Meira, H. M., Silva, E. J., Farias, C. B. B., Rufino, R. D., Luna, J. M., & Sarubbo, L. A. (2017). Production and characterization of a new biosurfactant from Pseudomonas cepacia grown in low-cost fermentative medium and its application in the oil industry. Biocatalysis and Agricultural Biotechnology, 12, 206–215. https://doi.org/10.1016/j.bcab.2017.09.004

  68. Spencer, J. F. T., Gorin, P. A. J., & Tulloch, A. P. (1970). Torulopsisbombicola sp. n. A van Leeuw. Antonie Van Leeuwenhoek, 36(1), 129–133. https://doi.org/10.1007/BF02069014

  69. Stankovich, K., & Simeonova, A. (2018). Techniques of cleaning up oil spills from contaminated beaches. Sustainable Development, 2, 28–36.

  70. Timmis, K. N. (Ed.). (2010a). Handbook of hydrocarbon and lipid microbiology p. 3705. Springer.

  71. Timmis, K. N. (Ed.). (2010b). Handbook of hydrocarbon and lipid microbiology p. 3689. Springer.

  72. Uquetan, U. I., Osang, J. E., Egora, O., Essoka, P. A., & Alozie, S.. I. and Bawan A. M. (2017). A case study of the effects of oil pollution on soil properties and growth of tree crops in Cross River State, Nigeria. Int. Res. J Pure and Applied Physics, 5, 19–28.

  73. Varjani, S. J., & Upasani, V. N. (2017). A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. International Biodeterioration and Biodegradation, 120, 71–83. https://doi.org/10.1016/j.ibiod.2017.02.006

  74. Vijayakum, S., & Saravanan, V. (2015). Biosurfactants-types, sources and applications. Research Journal of Microbiology, 10(5), 181–192. https://doi.org/10.3923/jm.2015.181.192

  75. Wang, S., Xu, S., Lin, Z., Zhang, J., Norbu, N., & Liu, W. (2017). The harm of petroleum-polluted soil and its remediation research Cite as: AIP Conference. Proceedings, 03 August 2017.

  76. Xianagang, M., Iyobosa, E., Jun, N. H., Fang, S., & Zhennan, W. (2020). Biodegradation of petroleum hydrocarbon polluted soil. Indian Journal of Microbiology Research, 7(2), 104–112. https://doi.org/10.18231/j.ijmr.2020.022

  77. Yavari, S., Malakahmad, A., & Sapari, N. B. (2015). A review on phytoremediation of crude oil spills. Water, Air, and Soil Pollution, 226(8), 279. https://doi.org/10.1007/s11270-015-2550-z

  78. Yuniati, M. D. (2018). Bioremediation of petroleum-contaminated soil: A review. IOP Conference Series: Earth and Environmental Science, 118. https://doi.org/10.1088/1755-1315/118/1/012063

Funding Information

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors

Declaration of Conflict

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.